济南2 3 5三甲基氢醌二酯
0.10g/mL的三甲基氢醌适合于该工艺。氢气压力的影响:当氢气压力从0.4MPa增加到0.8MPa时,TMBQ的转化率和反应时间几乎没有变化。观察到TMHQ的氢化产率先升高后降低。氢化产率的峰值出现在0.6MPa的氢气压力下。氢气压力对于氢气在反应体系中的溶解度和所提出机理的吸附步骤是必不可少的。当氢气压力低时,反应速度变慢。在一定范围内,氢气压力的升高将有利于氢分子的扩散和吸附。然而,当压力升高到较高水平时,压力对反应速率的积极影响将不会很明显。储存的地方必须远离氧化剂。济南2 3 5三甲基氢醌二酯
ASTM标准5-681(Pd)表面,三种三甲基氢醌Pd/C催化剂中的Pd颗粒均具有面心立方晶体的结构。样品1和样品2的峰几乎与新鲜催化剂的峰相同,表明Pd颗粒的相对结晶度没有明显大的变化。还通过Brunauer-Emmett-Teller(BET)测量表征催化剂,这表明催化剂的比表面积和孔半径已经改变。与新鲜催化剂相比,所用催化剂表现出较低的比表面积,较小的总孔体积和平均孔径。结果表明,催化剂表面有机物的吸附可能是催化活性降低的主要原因。采用DTG以进一步验证。由于水蒸发,在三个样品上都观察到在约100 ℃的吸热峰。三甲基氢醌费用即使是小量该产品渗入地下水也会对饮用水造成危害,对水中有机物质有毒。
在重排和酰化过程中,三甲基氢醌传统的催化剂是路易斯酸和布氏酸,如HF、三氟甲基磺酸、氯磺酸、多磷酸、发烟硫酸以及这些酸的混合物。在此类质子酸的存在下发生重排酰化,从而制取TMHQ。此类催化剂优点是反应活性很高,缺点是腐蚀性太强,易形成酸气流,且在中和反应后会有大量的盐生成,不利于产品提纯和净化。固体酸因其不易腐蚀设备,且反应后容易分离回收,因而受到普遍关注。研究较多的固体酸催化剂是铟盐,选择三价铟盐,如InC];以及全氟化的磺酸树脂。此类催化剂具有和硫酸--样高的活性,可使原料转化率达到100%但不耐高温,稳定性较弱,不便于重复利用。
维生素E可以作为工业抗氧剂、聚烯烃中无毒、可生物降解的稳定剂等。目前国内外市场对维生素E的需求量急剧增加。而天然存在的维生素E非常有限,因而适时的投产和扩大维生素E的生产都会带来较好的经济效益。结晶状固体。受热升华、受潮易变黑。微溶于水,易溶于乙酯、甲醇、不溶于石油醚。熔点173℃。该品是维生素E的主环,与异植物醇缩合得到维生素E。用于合成维生素E有机中间体、医药中间体,可用于合成VE。由1,2,4-三甲苯经磺化、硝化、还原、氧化得到三甲基氢醌(2,3,5-三甲基对苯二醌,TMHQ)([935-92-2])。三甲基氢醌和异植物醇是合成维生素E的两个中间体。
TMHQ在空气中极易被氧化,自然界中并不存在,其主要来源是人工合成以及从石油化工等行业的下脚料中提取。提取工艺存在工艺复杂、产率较低及产品纯度不高等问题,这些因素极大地限制了其应用范围;而人工合成工艺因其原料易得、工艺相对简单、转化率高等优点获得了普遍应用。人工合成的工艺主要有:首先将原料氧化为2.3.5-三甲基苯醌(TMBQ),再将TMBQ进-步还原为TMHQ。TMBQ的制备较为复杂,还原反应较容易实现,其还原方法主要有两类,即化学还原法和催化加氢还原法。偏三甲苯法综合经济效益好。2 3 5 三甲基氢醌价位
主要来源是人工合成以及从石油化工等行业的下脚料中提取。济南2 3 5三甲基氢醌二酯
若无部门许可,勿将材料排入周围环境。分子结构数据:摩尔折射率:44.49;摩尔体积(cm3/mol):135.1;等张比容(90.2K):350.2;表面张力(dyne/cm):45.1;介电常数:2.42;偶极距(10-24cm3):极化率:17.63;性质与稳定性:远离氧化物。存在于烟气中。贮存方法:存放在密封容器内,并放在阴凉,干燥处。储存的地方必须远离氧化剂。合成方法:由1,2,4-三甲苯经磺化、硝化、还原、氧化得到三甲基氢醌(2,3,5-三甲基对苯二醌,TMHQ)([935-92-2])。三甲基氢醌(2,3,5-三甲基对苯二醌,TMHQ)为黄色针状结晶,熔点32℃(38-29.5℃),沸点53℃。上述步骤生产的产品,一般得到石油醚或汽油的溶液。济南2 3 5三甲基氢醌二酯